Copied to
clipboard

G = C62.10Dic3order 432 = 24·33

10th non-split extension by C62 of Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial

Aliases: C62.10Dic3, C3⋊(C6.S4), C6.6(C3⋊S4), (C3×C6).16S4, (C2×C6)⋊2Dic9, C6.7(C3.S4), C3.A42Dic3, (C2×C62).8S3, (C22×C6).4D9, C23.2(C9⋊S3), C32.3(A4⋊C4), C3.2(C6.7S4), C222(C9⋊Dic3), C2.1(C32.3S4), (C3×C3.A4)⋊3C4, (C6×C3.A4).3C2, (C2×C3.A4).2S3, (C22×C6).5(C3⋊S3), (C2×C6).3(C3⋊Dic3), SmallGroup(432,259)

Series: Derived Chief Lower central Upper central

C1C22C3×C3.A4 — C62.10Dic3
C1C22C2×C6C62C3×C3.A4C6×C3.A4 — C62.10Dic3
C3×C3.A4 — C62.10Dic3
C1C2

Generators and relations for C62.10Dic3
 G = < a,b,c,d | a6=b6=1, c6=b2, d2=b2c3, ab=ba, cac-1=ab3, dad-1=a2b3, cbc-1=a3b4, dbd-1=a3b2, dcd-1=b4c5 >

Subgroups: 648 in 102 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C6, C2×C4, C23, C9, C32, Dic3, C2×C6, C2×C6, C2×C6, C22⋊C4, C18, C3×C6, C3×C6, C2×Dic3, C22×C6, C22×C6, C3×C9, Dic9, C3.A4, C3⋊Dic3, C62, C62, C6.D4, C3×C18, C2×C3.A4, C2×C3⋊Dic3, C2×C62, C9⋊Dic3, C3×C3.A4, C6.S4, C625C4, C6×C3.A4, C62.10Dic3
Quotients: C1, C2, C4, S3, Dic3, D9, C3⋊S3, S4, Dic9, C3⋊Dic3, A4⋊C4, C9⋊S3, C3.S4, C3⋊S4, C9⋊Dic3, C6.S4, C6.7S4, C32.3S4, C62.10Dic3

Smallest permutation representation of C62.10Dic3
On 108 points
Generators in S108
(1 78 21)(2 88 22 11 79 31)(3 89 23 12 80 32)(4 81 24)(5 73 25 14 82 34)(6 74 26 15 83 35)(7 84 27)(8 76 28 17 85 19)(9 77 29 18 86 20)(10 87 30)(13 90 33)(16 75 36)(37 101 60 46 92 69)(38 93 61)(39 103 62 48 94 71)(40 104 63 49 95 72)(41 96 64)(42 106 65 51 97 56)(43 107 66 52 98 57)(44 99 67)(45 91 68 54 100 59)(47 102 70)(50 105 55)(53 108 58)
(1 4 7 10 13 16)(2 14 8)(3 6 9 12 15 18)(5 17 11)(19 31 25)(20 23 26 29 32 35)(21 24 27 30 33 36)(22 34 28)(37 40 43 46 49 52)(38 41 44 47 50 53)(39 51 45)(42 54 48)(55 58 61 64 67 70)(56 68 62)(57 60 63 66 69 72)(59 71 65)(73 85 79)(74 77 80 83 86 89)(75 78 81 84 87 90)(76 88 82)(91 103 97)(92 95 98 101 104 107)(93 96 99 102 105 108)(94 106 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 51 10 42)(2 50 11 41)(3 49 12 40)(4 48 13 39)(5 47 14 38)(6 46 15 37)(7 45 16 54)(8 44 17 53)(9 43 18 52)(19 108 28 99)(20 107 29 98)(21 106 30 97)(22 105 31 96)(23 104 32 95)(24 103 33 94)(25 102 34 93)(26 101 35 92)(27 100 36 91)(55 88 64 79)(56 87 65 78)(57 86 66 77)(58 85 67 76)(59 84 68 75)(60 83 69 74)(61 82 70 73)(62 81 71 90)(63 80 72 89)

G:=sub<Sym(108)| (1,78,21)(2,88,22,11,79,31)(3,89,23,12,80,32)(4,81,24)(5,73,25,14,82,34)(6,74,26,15,83,35)(7,84,27)(8,76,28,17,85,19)(9,77,29,18,86,20)(10,87,30)(13,90,33)(16,75,36)(37,101,60,46,92,69)(38,93,61)(39,103,62,48,94,71)(40,104,63,49,95,72)(41,96,64)(42,106,65,51,97,56)(43,107,66,52,98,57)(44,99,67)(45,91,68,54,100,59)(47,102,70)(50,105,55)(53,108,58), (1,4,7,10,13,16)(2,14,8)(3,6,9,12,15,18)(5,17,11)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28)(37,40,43,46,49,52)(38,41,44,47,50,53)(39,51,45)(42,54,48)(55,58,61,64,67,70)(56,68,62)(57,60,63,66,69,72)(59,71,65)(73,85,79)(74,77,80,83,86,89)(75,78,81,84,87,90)(76,88,82)(91,103,97)(92,95,98,101,104,107)(93,96,99,102,105,108)(94,106,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,51,10,42)(2,50,11,41)(3,49,12,40)(4,48,13,39)(5,47,14,38)(6,46,15,37)(7,45,16,54)(8,44,17,53)(9,43,18,52)(19,108,28,99)(20,107,29,98)(21,106,30,97)(22,105,31,96)(23,104,32,95)(24,103,33,94)(25,102,34,93)(26,101,35,92)(27,100,36,91)(55,88,64,79)(56,87,65,78)(57,86,66,77)(58,85,67,76)(59,84,68,75)(60,83,69,74)(61,82,70,73)(62,81,71,90)(63,80,72,89)>;

G:=Group( (1,78,21)(2,88,22,11,79,31)(3,89,23,12,80,32)(4,81,24)(5,73,25,14,82,34)(6,74,26,15,83,35)(7,84,27)(8,76,28,17,85,19)(9,77,29,18,86,20)(10,87,30)(13,90,33)(16,75,36)(37,101,60,46,92,69)(38,93,61)(39,103,62,48,94,71)(40,104,63,49,95,72)(41,96,64)(42,106,65,51,97,56)(43,107,66,52,98,57)(44,99,67)(45,91,68,54,100,59)(47,102,70)(50,105,55)(53,108,58), (1,4,7,10,13,16)(2,14,8)(3,6,9,12,15,18)(5,17,11)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28)(37,40,43,46,49,52)(38,41,44,47,50,53)(39,51,45)(42,54,48)(55,58,61,64,67,70)(56,68,62)(57,60,63,66,69,72)(59,71,65)(73,85,79)(74,77,80,83,86,89)(75,78,81,84,87,90)(76,88,82)(91,103,97)(92,95,98,101,104,107)(93,96,99,102,105,108)(94,106,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,51,10,42)(2,50,11,41)(3,49,12,40)(4,48,13,39)(5,47,14,38)(6,46,15,37)(7,45,16,54)(8,44,17,53)(9,43,18,52)(19,108,28,99)(20,107,29,98)(21,106,30,97)(22,105,31,96)(23,104,32,95)(24,103,33,94)(25,102,34,93)(26,101,35,92)(27,100,36,91)(55,88,64,79)(56,87,65,78)(57,86,66,77)(58,85,67,76)(59,84,68,75)(60,83,69,74)(61,82,70,73)(62,81,71,90)(63,80,72,89) );

G=PermutationGroup([[(1,78,21),(2,88,22,11,79,31),(3,89,23,12,80,32),(4,81,24),(5,73,25,14,82,34),(6,74,26,15,83,35),(7,84,27),(8,76,28,17,85,19),(9,77,29,18,86,20),(10,87,30),(13,90,33),(16,75,36),(37,101,60,46,92,69),(38,93,61),(39,103,62,48,94,71),(40,104,63,49,95,72),(41,96,64),(42,106,65,51,97,56),(43,107,66,52,98,57),(44,99,67),(45,91,68,54,100,59),(47,102,70),(50,105,55),(53,108,58)], [(1,4,7,10,13,16),(2,14,8),(3,6,9,12,15,18),(5,17,11),(19,31,25),(20,23,26,29,32,35),(21,24,27,30,33,36),(22,34,28),(37,40,43,46,49,52),(38,41,44,47,50,53),(39,51,45),(42,54,48),(55,58,61,64,67,70),(56,68,62),(57,60,63,66,69,72),(59,71,65),(73,85,79),(74,77,80,83,86,89),(75,78,81,84,87,90),(76,88,82),(91,103,97),(92,95,98,101,104,107),(93,96,99,102,105,108),(94,106,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,51,10,42),(2,50,11,41),(3,49,12,40),(4,48,13,39),(5,47,14,38),(6,46,15,37),(7,45,16,54),(8,44,17,53),(9,43,18,52),(19,108,28,99),(20,107,29,98),(21,106,30,97),(22,105,31,96),(23,104,32,95),(24,103,33,94),(25,102,34,93),(26,101,35,92),(27,100,36,91),(55,88,64,79),(56,87,65,78),(57,86,66,77),(58,85,67,76),(59,84,68,75),(60,83,69,74),(61,82,70,73),(62,81,71,90),(63,80,72,89)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D6A6B6C6D6E···6L9A···9I18A···18I
order12223333444466666···69···918···18
size113322225454545422226···68···88···8

42 irreducible representations

dim111222222336666
type++++--+-+++--
imageC1C2C4S3S3Dic3Dic3D9Dic9S4A4⋊C4C3.S4C3⋊S4C6.S4C6.7S4
kernelC62.10Dic3C6×C3.A4C3×C3.A4C2×C3.A4C2×C62C3.A4C62C22×C6C2×C6C3×C6C32C6C6C3C3
# reps112313199223131

Matrix representation of C62.10Dic3 in GL7(𝔽37)

36100000
36000000
003534000
0011000
00003600
00000360
0000001
,
03600000
13600000
0010000
0001000
0000100
00000360
00000036
,
261700000
20600000
0023000
003636000
0000001
00003600
00000360
,
82800000
362900000
003119000
0006000
0000001
0000010
0000100

G:=sub<GL(7,GF(37))| [36,36,0,0,0,0,0,1,0,0,0,0,0,0,0,0,35,1,0,0,0,0,0,34,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,36,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[26,20,0,0,0,0,0,17,6,0,0,0,0,0,0,0,2,36,0,0,0,0,0,3,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,1,0,0],[8,36,0,0,0,0,0,28,29,0,0,0,0,0,0,0,31,0,0,0,0,0,0,19,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0] >;

C62.10Dic3 in GAP, Magma, Sage, TeX

C_6^2._{10}{\rm Dic}_3
% in TeX

G:=Group("C6^2.10Dic3");
// GroupNames label

G:=SmallGroup(432,259);
// by ID

G=gap.SmallGroup(432,259);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,14,926,394,675,2524,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^2,d^2=b^2*c^3,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^2*b^3,c*b*c^-1=a^3*b^4,d*b*d^-1=a^3*b^2,d*c*d^-1=b^4*c^5>;
// generators/relations

׿
×
𝔽